
Windows Socket Custom Control Reference
Copyright © 1995 Fenestra Software L.L.C.

Whats New Events Properties Errors License Support

Description
This control provides communications for your application by allowing the transmission and reception of
data through the winsock dynamic link library.

File Name
FSSOCKET.VBX

Object Type
FSSocket

Remarks
The FSSocket control has two methods for establishing a connection via winsock.

 Client mode. Your application sets the PortNumber and HostAddress it wishes to communicate with,
and then uses the Connect property to establish the connection.
 Server mode. Your application sets the port it wants to Listen on for a connection. The control will notify
the application when a client has made a connection.
Each FSSocket control can communicate only over one connection. If you need more than one
connection you must use more than one control.
Distribution Note

When you create and distribute applications that use the FSSocket control, you should install the file
FSSOCKET.VBX in the customer's Microsoft Windows \SYSTEM subdirectory. The Setup Kit included
with Visual Basic provides tools to help you write setup programs that install your applications correctly.

Application Notes
The following Applications Notes discuss the usage of FSSocket.

 A simple example
 Creating a TCP Client
 Creating a TCP Server
 Creating a UDP Client
 Creating a UDP Server

What's New
 LocalPort Property added.
 After a connection is established, the LocalPort and LocalAddress properties are updated via a call to
getsocketname(). This is done to establish the correct LocalAddress for systems with more than one IP
address.
 UDP send functionality upgraded. No default address is established, the datagram is sent to the host
specified by the HostAddress and PortNumber properties when the Send property is set.
 UDP listen functionality fixed. It works now.

Copyright Notice/License Information
FSSocket Copyright © 1995 by FENESTRA SOFTWARE L.L.C..

All rights reserved.

License Agreement
You should carefully read the following terms and conditions before using this software. Unless you have
a different license agreement signed by Fenestra Software, your use of this software indicates your
acceptance of this license agreement and warranty.

Evaluation and Registration
This is not free software. You are hereby licensed to use this software for evaluation purposes without
charge for a period of 60 days. If you use this software after the 60 day evaluation period a registration
fee as shown in the section Ordering Information/Order Form is required. Payments must be in US
dollars drawn on a US bank, and should be sent to:

Fenestra Software
P.O. Box 87347
Phoenix AZ 85080

When payment is received you will be sent a registered copy of the latest version of FSSocket.
Unregistered use of FSSocket after the 60-day evaluation period is in violation of U.S. and international
copyright laws.

Shareware Distribution
Provided that you verify that you are distributing the Shareware Version (double click on the "About"
property) you are hereby licensed to make as many copies of the Shareware Version of this software
and documentation as you wish; give exact copies of the original Shareware Version to anyone; and
distribute the Shareware Version of the software and documentation in its unmodified form via electronic
means.    There is no charge for any of the above.   
You are specifically prohibited from charging, or requesting donations, for any such copies, however
made; and from distributing the software and/or documentation with other products (commercial or
otherwise) without prior written permission, with one exception:   
Disk Vendors approved by the Association of Evaluation Professionals are permitted to redistribute
FSSocket, subject to the conditions in this license, without specific written permission.
No one, other that Fenestra Software L.L.C. or its designated representative, may distribute the license
files(FSSOCKET.LIC and/or FSSOCKET.SIT).

Registered Version
FSSocket can be used in two modes.

 Design mode, which is used for creating applications.
 Runtime mode, which is used to supply functionality for previously created applications.

Design mode
One registered copy of FSSocket may be used in design mode, by a single person who uses the
software personally on one or more computers, or installed on a single workstation used
nonsimultaneously by multiple people, but not both.
You may access the registered version of FSSocket through a network, provided that you have obtained
individual licenses for the software covering all workstations that will access the software in design mode
through the network.    For instance, if 8 different workstations will access FSSocket in design mode on
the network, each workstation must have its own FSSocket license, regardless of whether they use
FSSocket at different times or concurrently.
You may not place the license file on more than one system, or access the license file over a network.
You may not distribute the license files(FSSOCKET.LIC and/or FSSOCKET.SIT).
You may transfer the license file on a permanent basis provide you retain no copies.

Runtime Mode
There are no runtime fees or royalties.

Once you have licensed FSSocket, you have a royalty-free right to reproduce and distribute the
FSSOCKET.VBX file as a part of your own products.
You may not distribute the license files (FSSOCKET.LIC and/or FSSOCKET.SIT).

Disclaimer of Warranty
THIS SOFTWARE AND THE ACCOMPANYING FILES ARE SOLD "AS IS" AND WITHOUT
WARRANTIES AS TO PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES
WHETHER EXPRESSED OR IMPLIED.    Because of the various hardware and software environments
into which FSSocket may be put, NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE IS
OFFERED.
Good data processing procedure dictates that any program be thoroughly tested with non-critical data
before relying on it.    The user must assume the entire risk of using the program.    ANY LIABILITY OF
THE SELLER WILL BE LIMITED EXCLUSIVELY TO PRODUCT REPLACEMENT OR REFUND OF
PURCHASE PRICE.

Ordering Information/Order Form
FSSocket 1.0 Order Form/Invoice

Ordering by check:   
To order by check send this order form and a check to:
Fenestra Software L.L.C.
P.O.Box 87347
Phoenix AZ 85080
To print this order form, click on Print Topic in the File pull-down menu. Payments must be in US dollars
drawn on a US bank, or you can send international postal money orders in US dollars.

Credit card ordering:
For information on ordering by MasterCard, Visa, American Express, or Discover by phone, FAX, or
CompuServe email, or postal mail, click here:Credit Card Ordering Information.

CompuServe Registration:   
To have the registration fee added to your CompuServe bill type GO SWREG at the ! prompt and follow
the menus.

Purchase Orders:
For information on using purchase orders click here:Purchase Orders.

Order Form

Single Copy Pricing
 Price Quantity Amount
 $75 x ______ = ______
Multiple Copy Pricing
For 2 to 9 copies $60 x ______ = ______
For 10 to 24 copies $48 x ______ = ______
For 25 to 49 copies $38 x ______ = ______
For 50 to 99 copies $31 x ______ = ______
For 100 to 199 copies $25 x ______ = ______
Shipping
Arizona residents add 8% sales tax: + ______
 Total payment: ______

Name: ________________________________Date:______________
Company: __
Address: __
City, State, Zip: _______________________________________
Country: __
Day Phone: ____________________Eve:______________________
Electronic Mail address: ________________________________
How did you hear about FSSocket? ________________________
Comments:

Credit Card Ordering
You can order with MasterCard, Visa, American Express, or Discover from Public (software) Library by
calling 800-2424-PsL or 713-524-6394 or send your order by FAX to 713-524-6398 or by CIS Email to
71355,470 or Internet mail to 71355.470@compuserve.com. You can also mail credit card orders to PsL
at P.O.Box 35705, Houston, TX 77235-5705.
Please be sure to include your credit card number and expiration date on all credit card orders.
The above numbers are for credit card orders only.
Fenestra Software cannot be reached at these numbers.
Any questions about the status of the shipment of the order, refunds, registration options, product
details, technical support, volume discounts, dealer pricing, site licenses, non-credit card orders, etc,
must be directed to Fenestra Software L.L.C., P.O. BOX 87347, Phoenix AZ 85080 or by email to
70176,264 on CompuServe or jcs@primenet.com on Internet.
To insure that you get the latest version, PsL will notify us the day of your order and we will ship the
product directly to you.

Purchase Orders
Purchase orders (net 30 days) are accepted only from government and accredited educational
institutions and major corporations, provided that they are submitted on purchase order forms with a
purchase order number.    Please be sure to include the standard FSSocket order form with a purchase
order.    Due to the extra work involved in processing purchase orders you are encouraged to use a
credit card, CompuServe's SWREG registration service, petty cash, or an expense account when
possible for small orders.

Support and Questions
Technical support is available at no charge by sending electronic mail to

jcs@primenet.com on the Internet,
or by sending US Mail to

Fenestra Software L.L.C.
P.O.Box 87347
Phoenix AZ 85080

Events
Connected DataReceived Disconnected ReadyToSend

Connected Event
Description

The Connected event is generated when a successful connection has been made.

Visual Basic
Sub FSSocket_Connected (StatusCode As Integer, Description As String)

Remarks
The StatusCode contains 0 and the Description contains "OK".
This event is not generated for client type UDP connections.    UDP connections are "send and pray".

DataReceived Event
Description

This event is generated when data has been received over the connection.

Visual Basic
Sub FSSocket_DataReceived (Text As String, EOL As Integer)

Remarks
The Text contains the data that was received. EOL is True if the EOL property has been set and a
matching string was found in the data received. The matching EOL string is stripped from the Text. Any
data that remains after the EOL string will be included in the next DataReceived event.

Disconnected Event
Description

The Disconnected event is generated when a connection closes.

Visual Basic
Sub    FSSocket_Disconnected (StatusCode As Integer, Description As String)

Remarks
The StatusCode    and Description contain the reason for the disconnect.

ReadyToSend Event
Description

The ReadyToSend event is generated when the backlog of data to send reaches 0.

Visual Basic
Sub FSSocket_ReadyToSend ()

Remarks
If a Send fails with a WSALastErrorMsg of "Operation Would Block", your application can wait for this
event before retrying the Send

Properties
About Connect EOL HostAddress
HostName InputBufferSize ListenPort Listen
ListenSocket LocalAddress LocalName LocalPort
OutputBufferSize PortNumber Protocol Send
ServiceName Socket WSALastErrorMsg WSALastError

About Property
Description

Contains Copyright information

Connect Property
Description

Set to True to establish a connection.

Remarks
This is an action property. When your application sets this property to True the control attempts to create
a connection to the PortNumber and HostAddress specified. If the connect is successful the Connected
event occurs, otherwise this property is set to False.
If the Protocol property is set to UDP, no connection is created. The socket is bound to your local
address. To specify a local port number for the bind operation, set ListenPort prior to setting the Connect
Property to True. If the ListenPort number is zero, winsock will assign a local port number. The
ListenPort is used because, if you need to actually set a local port number for a UDP connection, you
will probably be "listening" for packets, ie. creating a server.
This property is also set to True when the control is in server mode and a connection is established.

EOL Property
Description

Contains a string that delimits lines of input received.

Remarks
When receiving ASCII data it is often useful to break the data up into individual lines. This property allow
you to specify a string that marks the end of line for incoming data. The receiving buffer is searched for a
matching string. When it is found, the data, up to but not including the end of line string, is sent to your
application via the DataReceived event. Any remaining data in the buffer is sent to your application in the
next DataReceived event.

HostAddress Property
Description

Contains the Internet Address of the host your application is attempting to communicate with.

Remarks
The format of the property is the standard Internet dot format.
Setting this property causes the control to issue a blocking gethostbyaddr call to fill in the HostName
property.

HostName Property
Description

Contains the Internet Domain Name of the host your application is attempting to communicate with.

Remarks
The format of the property is the standard Internet dot format.
Setting this property causes the control to issue a blocking gethostbyname call to fill in the HostAddress
property.

InputBufferSize Property
Description

Specifies the size of the input buffer.

Remarks
This specifies the size of the buffer FSSocket uses to hold the incoming data prior to generating the
DataReceived event and the size of the underlying Window Socket input buffer.

Listen Property
Description

Set to True to establish a server application.

Remarks
This is an action property. Setting this property to True puts the control into server mode. The control will
then listen on the specified port for a client connection.    When a connection is made a Connected event
occurs. At this time your application can examine the HostAddress property to establish the address of
the client. While a client/server connection is open any other attempt by a client to open a connection
will be queued until the current connection is closed.
When your application sets this property to True the control attempts to listen on the ListenPort
specified.
If the ListenPort is zero, Sockets will select a port for you and the port number will be placed in
ListenPort.
If the Protocol property is set to UDP, FSSocket will watch the ListenPort for UDP datagrams. When one
arrives the DataReceived event is fired.

ListenPort Property
Description

Specifies the port that your application wishes to monitor for incoming connections.

Remarks
Setting this property to zero causes Sockets to select a port number when the Listen property is set to
True.

ListenSocket Property
Description

Contains the Socket number this control is watching for connections.

Remarks
This property is read only.

LocalAddress Property
Description

Contains the Internet Address of the system this control is running on.

Remarks
This property is read only.

LocalName Property
Description

Contains the Domain Name of the system this control is running on.

Remarks
This property is read only.

LocalPort Property
Description

Contains the local port number for the current connection.

Remarks
This property is read only.

OutputBufferSize Property
Description

Specifies the size of the output buffer.

Remarks
This specifies the size of the buffer FSSocket uses to hold the outgoing data while waiting for a
FD_WRITE message from Windows Sockets and the size of the underlying Window Socket output
buffer.

PortNumber Property
Description

Specifies the number of the port your application is attempting to communicate with.

Remarks
Setting this value also sets the ServiceName property.

Protocol Property
Description

Specifies the protocol to use for this connection.

Remarks
Currently only TCP and UDP are supported.
Connected events are not generated when using UDP for a client connections.

Send Property
Description

Send data over the connection.

Remarks
Assigning a string to this property sends the string over the connection.

ServiceName Property
Description

Contains a string representing the service you wish to communicate with.

Remarks
Setting this value also sets the PortNumber property.

Socket Property
Description

Contains the Socket number for this control.

Remarks
This property is read only.

WSALastError Property
Description

Contains the last error number returned by Windows Sockets.

Remarks
When FSSocket detects an error from Windows Sockets, the error number is placed in this property and
a trappable FSSocket error is generated.

WSALastErrorMsg Property
Description

Contains a string corresponding to the WSALastError property.

Remarks
When FSSocket detects an error from Windows Sockets, an error message is placed in this property
and a trappable FSSocket error is generated.

Error Codes
The following trappable errors can be generated by the FSSocket control.

Error Number Explanation
20101 Unable to obtain memory.
20102 WinSocket Error detected.

The following is a list of possible error codes returned in the WSALastError property, along with their
explanations.    The error numbers are consistently set across all Windows Sockets compliant
implementations.

WSALastError WSALastErrorMsg
10004 Interrupted system call.
10009 Bad file number.
10013 Access denied.
10014 Bad address.
10022 Invalid argument.
10024 Too many open files.
10035 Operation would block.
10036 Operation now in progress.
10037 Operation already in progress.
10038 Socket operation on non-socket.
10039 Destination address required.
10040 Message too long.
10041 Protocol is wrong type for socket.
10042 Bad protocol option.
10043 Protocol not supported.
10044 Socket type not supported.
10045 Operation not supported on socket.
10046 Protocol family not supported.
10047 Address family not supported by protocol family.
10048 Address already in use.
10049 Cant assign requested address.
10050 Network is down.
10051 ICMP network unreachable.
10052 Network was reset.
10053 Software caused connection abort.
10054 Connection reset by peer.
10055 No buffer space is supported.
10056 Socket is already connected.
10057 Socket is not connected.
10058 Cant send after socket shutdown.
10059 Too many references.
10060 Connection timed out.
10061 Connection refused.
10062 Too many levels of symbolic links.
10063 Name too long.
10064 Host is down.
10065 Host is unreachable.
10066 Directory not empty.
10067 EPROCLIM returned.

10068 EUSERS returned.
10069 Disk quota exceeded.
10070 ESTALE returned.
10071 The object is remote.
10091 System not ready.
10092 Version is not supported.
10093 Not initialized.
10101 The circuit has gracefully terminated.
11001 Host not found.
11002 Try again.
11003 Non recoverable error.
11004 No data record available.

A simple example
Probably the simplest example program that can be written is a hostname lookup.

1. Start Visual Basic.
2. From the file menu, use Add File to add    FSSOCKET.VBX to the project.
3. Place the following on the form.

A text box named HostName.
A text box named HostAddress.
A command button named getname.
A command button named getaddr.
A fssocket control named fssocket1.

4. Add the following code:
Sub getaddr_Click ()
 fssocket1.HostName = hostname.Text
 HostAddress.Text = fssocket1.HostAddress
End Sub

Sub getname_Click ()
 fssocket1.HostAddress = HostAddress.Text
 HostName.Text = fssocket1.HostName
End Sub

5. Run the program.
Type a domain name into the HostName text box and click on the getaddr button. The IP address
that corresponds to the domain name will be placed in the HostAddress text box.
Type an IP address in the HostAddress box and click on the getname button. The domain name for
that IP address will be placed in the HostName box.

Creating a TCP Client
The TCP protocol is meant for reliable communications over a TCP/IP network. Reliable means that the
data is guaranteed to arrive complete and in the correct order in which it was sent.

A simple example
For our example we will connect to the echo port on the local host machine. This port simply echoes
back anything it receives.
1. Start Visual Basic.
2. From the file menu, use Add File to add    FSSOCKET.VBX to the project.
3. Place the following on the form and set the properties as shown:

A text box named IBox.
A text box named Obox.
A fssocket control named fssocket1.

Set HostName to "localhost" or any other host that has an ECHO server.
Set Service to "echo" or Set PortNumber to 7.

4. Add the following code:
Sub Form_Load ()
 fssocket1.Connect = True
End Sub
Sub IBox_KeyPress (keyascii As Integer)
 If keyascii = 13 Then
 fssocket1.Send = IBox.Text
 keyascii = 0
 IBox.Text = ""
 End If
End Sub
Sub FSSocket1_DataReceived (Text As String, EOL As Integer)
 OBox.Text = Text
End Sub

5. Run the program.
Type some text into IBox and then hit enter. The contents of IBox are sent to the echo port on the
specified host. The data is echoed back and placed in OBox when it is received.
This program doesnt do anything real useful other than demonstrate that FSSocket is working.

Programming considerations
Most client/server network communications protocols require a "conversational" mode of interaction.
The client sends a request and waits for the server to respond. Unfortunately windows being
message based, does not lend itself to this type of interaction.
One way of over coming this, is to make your DataReceived function into a "state" machine that
knows how to handle any possible response from the server.
Another way involves setting and testing some global variables, for example:
Dim WaitingForData as Integer
Dim ServerData as String
Sub FSSocket1_DataReceived (Text As String, EOL As Integer)
 ServerData = Text
 WaitingForData = False
End Sub
In your main line code:
WaitingForData = True
fssocket1.send = "Command to Server"

While WaitingForData = True
 DoEvents
Wend
At this point the global ServerData contains the response from the server.

Creating a TCP Server
A simple example

For our example we will create a simple echo server. This server simply echoes back anything it
receives.
1. Start Visual Basic.
2. From the file menu, use Add File to add    FSSOCKET.VBX to the project.
3. Place the following on the form and set the properties as shown:

A text box named Portnum.
A fssocket control named fssocket1.

4. Add the following code:
Sub Form_Load ()
 FSSocket1.ListenPort = 0
 FSSocket1.Listen = True
 portnum = FSSocket1.ListenPort
End Sub
Sub FSSocket1_DataReceived (text As String, EOL As Integer)
 FSSocket1.Send = text
End Sub
Sub FSSocket1_Connected (StatusCode As Integer, Description As String)
 Debug.Print "Connected to " + FSSocket1.HostAddress + " on port " +
FSSocket1.LocalPort
End Sub

5. Run the program.
The number that is shown in the portnum text box is the local port number that winsock assigned. To
assign a specific port, set the ListenPort property prior to setting Listen to True.

Creating a UDP Client
UDP is a conectionless protocol. This means that there is no end to end connection between client and
server. Each transmission is simply sent. There is no guarantee that the data arrived or in what order the
data was received. If two datagrams are sent, the second datagram may be received before the first.

A simple example
For our example we will connect to the echo port on the local host machine. This port simply echoes
back anything it receives.
1. Start Visual Basic.
2. From the file menu, use Add File to add    FSSOCKET.VBX to the project.
3. Place the following on the form and set the properties as shown:

A text box named IBox.
A text box named Obox.
A fssocket control named fssocket1.

Set Protocol to UDP.
4. Add the following code:

Sub Form_Load ()
 fssocket1.Connect = True
End Sub
Sub IBox_KeyPress (keyascii As Integer)
 If keyascii = 13 Then
 fssocket1.PortNumber = 7
 fssocket1.HostAddress = "127.0.0.1"
 fssocket1.Send = IBox.Text
 keyascii = 0
 IBox.Text = ""
 End If
End Sub
Sub FSSocket1_DataReceived (Text As String, EOL As Integer)
 OBox.Text = Text
End Sub

5. Run the program.
Type some text into IBox and then hit enter. The contents of IBox are sent to the echo port on the
specified host. The data is echoed back and placed in OBox when it is received.
As you can see this is almost identical to the TCP client example, but what happens in FSSocket is
quite different.
The first difference is that no HostAddress or PortNumber were specified before the Connect. This is
because the UDP connect only binds our local address. We do not need to set a destination until we
are ready to send data. If you are sending to only one address/port, you should only set these values
once, because each time a HostAddress or HostName is set the nameservers are queried. This can
slow down performance.
The second difference is that the Connect and Disconnect events never fire.

Creating a UDP Server
A simple example

For our example we will create a simple echo server. This server simply echoes back anything it
receives.
1. Start Visual Basic.
2. From the file menu, use Add File to add    FSSOCKET.VBX to the project.
3. Place the following on the form and set the properties as shown:

A text box named Portnum.
A fssocket control named fssocket1.

Set Protocol to UDP.
4. Add the following code:

Sub Form_Load ()
 FSSocket1.ListenPort = 0
 FSSocket1.Listen = True
 portnum = FSSocket1.ListenPort
End Sub
Sub FSSocket1_DataReceived (text As String, EOL As Integer)
 Debug.Print "Data received from " + FSSocket1.HostAddress + " port "
+ FSSocket1.PortNumber
 FSSocket1.Send = text
End Sub

5. Run the program.
The number that is shown in the portnum text box is the local port number that winsock assigned. To
assign a specific port, set the ListenPort property prior to setting Listen to True.
As you can see this is almost identical to the TCP server example, but what happens in FSSocket is
quite different.
The first difference is that HostAddress or PortNumber properties are updated by FSSocket each
time data is received. This is because the UDP each datagram can come from a different client.
The second difference is that the Connect and Disconnect events never fire.
The third difference is that the EOL property is ignored. Since each datagram can come from a
different client, FSSocket cannot attempt to break up a datagram.

